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ON A QUARTIC DIOPHANTINE EQUATION

by R. J. STROEKER and B. M. M. DE WEGER

(Received 9th June 1994)

In this paper we consider the quartic diophantine equation 3(>>2— \) = 2x2(x2 — 1) in integers x and y. We
show that this equation does not have any other solutions (x,y) with xSO than those given by
x = 0,1,2,3,6,91. Two approaches are emphasized, one based on diophantine approximation techniques, the
other depends on the structure of certain quartic number fields.

1991 Mathematics subject classification: Primary, 11D25; Secondary, 11Y50.

1. Introduction

The diophantine equation referred to in the title is the following inhomogeneous
quartic equation

3(y2-l) = 2x2(x2-l). (1)

The wish to determine the complete set of rational integral solutions of (1) was
expressed by Diaconis and Graham in [2, p. 328]. Apparently, the solutions to this
diophantine problem correspond to values of keN for which the Radon transform
based on the set of all xeZ\ with exactly four ones is not invertible.

We thank Hendrik Lenstra who communicated the problem to Jaap Top, to whom
we are equally grateful for pointing it out to us.

In the sequel we shall solve equation (1) completely by reducing this equation to a
finite set of Thue equations, which are subsequently dealt with individually. In fact we
have to solve five different quartic Thue equations. We feel the original equation to be
sufficiently interesting to warrant a twofold solution process, emphasizing algebraic as
well as diophantine approximation techniques.

The diophantine approximation approach rests on the theory of linear forms in the
logarithms of algebraic numbers and follows the lines set out in [7] and [6], and the
algebraic approach is based on the properties of certain binary sequences with values in
a quadratic subfield of the biquadratic number field associated with the relevant Thue
equation (see [3]).
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98 R. J. STROEKER AND B. M. M. DE WEGER

We shall prove

Theorem. The only integral solutions (x,y) of (1) are those associated with |x| =
0,1,2,3,6, and 91.

It is remarkable—this was pointed out by Hendrik Lenstra, who got it from Neville
Robbins—that the positive x-values of the solutions of (1) coincide with those of the
well-known Ramanujan-Nagell equation

2"-7=(2x- l ) 2 .

This is probably a mere coincidence; at least, we fail to see an explanation. Another
noteworthy aspect of equation (1) is that the minimal Weierstrass equation of the
corresponding elliptic curve has very many integral solutions.

The birational transformation given by

18jH-18-2x2 108JH-108-36X2

A — j , / — 3 (J.)

sends (1) to

72 = AT3-228^ + 848. (3)

The elliptic curve E/Q with (minimal) Weierstrass equation (3) has rank 2, torsion
group £(Q)lors = { 0,(4,0)}—here O is the group identity—and the free component of the
Mordell-Weil group E(Q) is generated by the points P1=(2,20), and P2 = (-2,36). So,
for any integral point P on E/Q we have

P = m1P2 + m2P2 + T, where T = O or (4,0) (4)

for suitable integers m1 and m2. In [5] it is shown that such information as given in (4)
generally suffices to recover all integral points on the original Weierstrass equation by
finding effective upper bounds for the coefficients of a certain linear form in elliptic
logarithms, which corresponds to finding upper bounds for coefficients like w^ and m2

in (4). A definite advantage of this method is that it can be avoided having to deal with
many Thue equations separately.

Note that many integral points on (3) are mapped to non-integral points on (1) by
the birational transformation (2), and vice versa, not all integral points on (1) are
mapped to integral points on (3).

2. The Thue equations

In this section we shall derive the Thue equations that can be associated with (1). The
result of this derivation has been laid down in the following lemma.
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Lemma. Let (x,y) be an integral solution of (I). Then integers u and v exist satisfying
one of the following equations:

(LI) 5u4 + 2 u V - i ; 4 =6 withx = uv,
(L2) 5w4-4uV-4u4 = - 3 withx = 2uv,
(L3) u4 + 12uV-180i;4 = l withx = 6uv,
(L4) 9 U 4 + 1 2 U V - 2 0 D 4 = 1 withx = 6uv,
(L5) 9 M 4 - 6 U V - 5 D 4 = - 2 withx = 3uv.

Proof. Let (x,y)eZ2 be a solution of the original equation (1). After rewriting (1),
factorization in F: = Q(N/ —5) yields

6 / = (2x2-A)(2x2-X), (5)

where A:= 1 +N/—5 and X denotes the complex conjugate of A in F. We shall work in
the ring of integers of the number field F. This field has class number 2 and the
non-principal ideal class <& contains the prime ideals p2, p3 and p3, where the index
refers to the underlying rational prime. The following ideal relations are easily checked:

As y2 = (2x2-l)2^0 (mod 5), it follows from (5) and (6) that the principal ideals
[2x2 — X] and [2x2 — X] can have no other common prime ideal divisor than p2. This
leaves the following two possibilities:

(I) [2x2-A] = p2p3a2, and (T)

for some integral ideal a. Cases (I) and (T) will be called conjugate cases. Now either a
belongs to the principal ideal class or a belongs to class "if in which case p2a is a
principal ideal. This gives

(I) [2h(2x2-A)] = p2p3a2 = [ l - y ^ 5 ] [ a + fcN/e5]2, (7)

where /ie{0,1}, and a and b are arbitrary rational integers. The conjugate case (T) can
be expressed similarly.

We first consider (I). Equating coeffients in (7) yields the quadratic system of
equations

(8)
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Taking the second equation in (8) mod3 shows that 5=(-l)h and a — b^O (mod 3). It is
also clear that gcd(a,b)= 1. Adding the equations of (8) yields

(a-b)(a + 5b)=(-2)hx2.

As gcd(a — b,a + 5b) = 1 or 2, we deduce that \a — b\ is a perfect square or twice a perfect
square. Without loss of generality we may choose the signs of a and b such that

a — b = u2, or a — b = 2u2

for a suitable integer u. The former choice forces h to vanish, and leads via the second
equation of (8) to the quartic (LI). The latter choice is only possible when h = l, and we
find in this case equation (L2).

Next we consider the conjugate case. Equating coefficients in the conjugate case yields
the quadratic system of equations

a2-\0ab-5b2=-d2h(2x2-\)

Taking the second equation in (9) mod3 again shows that £ = (—1)\ Subtracting this
time the equations of (9) yields

= (-2)"x2.

From the second equation of (9) it follows that a must be odd, for even a forces
b2=—2h (mod4) which is clearly impossible. As gcd(a,b) = l, we deduce that \a\ is a
perfect square or three times a perfect square. Without loss of generality we may choose
the sign of a such that

= u2, or a =

for a suitable integer u. In case a = u2, we may write b = 3( — l)h2l~hv2 for some rational
integer v. Then x = 3-21~*ui; and the choice h = 0 leads to the quartic (L3), whereas h= 1
gives an impossible equation mod 4. Similarly, for a = 3u2, we have b—( — l)h21~hv2 and
again x = 3-21~huv. The choice h = 0 yields (L4) and h=l gives the quartic (L5).

This completes the proof of the Lemma. •
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In view of the Lemma it is clear that in order to prove the Theorem it is sufficient to
solve each of the quartic equations appearing in this Lemma. The integral solutions of
these five Thue equations are the subject of the following proposition.

Proposition. The only integral solutions (u, v) with non-negative u and v of the five
quartic Thue equations of the Lemma are given in the table below.

72

(u,v)

LI L2 L3 L4 L5

(1,1) (1,1) (1,0) (1,1) (1,1)
(7,13)

Before we start on the actual proof, we shall collect the necessary information from
the quartic number fields associated with these Thue equations. In this compilation of
facts we were assisted by the following programs for performing the actual compu-
tations, and for checking the computed results.

• KANT version 2: a collection of numerical routines for calculations in algebraic
number fields,

• GP/PARI-1.38: a collection of numerical and symbolic routines for (algebraic)
number theory,

• MapleV version 2: the computer algebra package.

Adopting the following notations for polynomials and constants

we see that the equations of the Lemma may be rewritten as:

(Ll)og1{v,u) = mi,

(L2)og2(2v,u) = m2,

(L3)og3(u,u) = m3, (10)

(L5)o gs(3u,v) =

Here (Li) refers to the corresponding equation of the Lemma. It usually pays to choose
the most natural irreducible polynomial—i.e. having the smallest possible coefficients—
defining a given number field. Now #,(*, 1) and g2(x, 1) satisfy this requirement, but
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g3{x, 1) and gs(x, 1) do not. Apart from symmetry reasons, that is why we prefer to
define new polynomials in these two cases. Also note that (L3) and (L4) of the Lemma
correspond to the same number field. These new polynomials are:

M*):=£i(*.l)» h2(x):=g2(x,l),

h3(x): = x4 + 2x2-5, hs(x): = x*-4x2-20.

For fixed i= 1,2,3, or 5, let 6 be a root of /i,(x) = 0 and let ^ be a root of g,(x)=0,
both real or both non-real. The number fields generated by 0 and ij/ are isomorphic, and
the isomorphisms between the corresponding Q(0) and Q(ip) can be made explicit by:

ip = 0 and 6 = \ji for i= 1,2,

and e = ̂  + ̂ 3 fori = 3,

and 0=-!i/>+£i/'3 fori = 5.

The four number fields K: = Q(0) = Q(\l/) are quartic fields with two real and one pair
of complex conjugate em beddings in C. All four discriminants coincide with —46080=
21O325. Further, each field is a quadratic extension of L: = 0(^/6). Table 1 contains the
following information on each field:

• an integral basis {1,0, $, w},
• a system of fundamental units {E, rj},
• the generator £> 1 of the relative unit group {(| NormK/l(C) = l,£>0},
• the regulator 3tK,
• generators of the prime ideals dividing 2 and 3 with their norms.

All fields have trivial class groups, and no two fields are isomorphic, as their
regulators differ.

Let us denote the two real conjugates of any ae IK by at and a2) and the two complex
conjugates by oc3 and <x4: = a3. Note that for all fields 02= — #i a n ( l ^2— ~ll/i> a n d a ' s o

04= — 03 and 1̂ 4= —i//3. In Table 2 we give the values of 01; 03,1/^, and ij/3 explicitly.
Each one of the equations g((X, y) = mi f°r I = 1.2,3,5, and g3(X, Y) = m4 gives rise to

an equation of the form

*-y<A=±/zey, (11)

where (i is a IK-integer of norm m,, which is determined up to a unit, and a and b are
unknown rational integers. Observe that we may drop the + sign, as solutions (X, Y) of
(11) come in foursomes (±X, + Y).

From this observation and from the entries of Tables 1 and 2 it is easy to deduce that
the possible values of fx may be restricted as follows—also it should be noted that n has
been chosen such that a = b = 0 always corresponds to one of the solutions.
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1

1
2
3
5

i

1
2
3
5

IK = Q(0), where
{1,0,0,o)} is an i

02

02

l/l/<±l>-<«>,
e

3 + 20
3-20
3-20
3 + 20

Integral bases

0isrootof/i,(x)=O,
ntegral basis of IK, 9?K

CO

e3

2o3*

Unit groups

^ K / < ± 1 > = <£>'7>. UK

1

12 + 70 + 0+40)

2 + 30-0-2o>

L = Q(^)cK
is its regulator

20.635
25.604
10.913
15.385

/L/<±l> = <O

Prime factorizations

[2] = [> 2 ] 4 for all i, with Norm(7i2)= - 2 ,
[3] = [7i31]2

 [ T I 3 2 ] 2 for i = l , 2 with Norm(7T31) = Norm(7i32) = 3,
[3] = | > 3 ] 2 for i = 3,5 with Norm(7t3) = 9

i

1
2
3
5

7I2

1+40-co
4 + 30 + 0 + co

1+0
2-0 + 0-a)

TC3 o r TC3 1

2 + 0
3 + 20 + 0 + a)

2-0
4-0

I 3 2

2-0
3-20 + 0-co

TABLE 1. Associated number fields

(,=

3) n=\

4) ^ = 3-i/r =

5) // = 3-i/' =

(12)

Equation (11) is essential for either one of the approaches chosen. But from this point
onward, the two methods diverge.
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i

1

2

3

5

0!

/ l + v/6

1-2 + 2^/6

Real conjugates

03 <Ai

1-2-2^6 0,

V V

^ 3

03

-l-6-6y/6

-^3-3^6

TABLE 2. Field generators

3. A proof by diophantine approximation methods

In this section we give a complete proof of the Theorem using the techniques exposed
in [6] and [7]. However, details that may distract the reader's attention from the main
line of reasoning are omitted. In those instances complete references are provided.

First proof of the Proposition. We set off by showing that the case ( = 4 is the
spitting image of the case i = 3, provided we allow for X, ye(l/(^/3))Z and ae^Z
instead of X,Y,aeZ. Indeed, the associated number fields for the cases i = 3 and i=4
coincide, and the relation

= 9 andin the octic number field ^(^/I) , is easily verified. Further, g3(X,Y)
/i, Y/y/i) = l are equivalent. Hence, equation (11) with i = 4, i.e.

X- 7^ = + (3 -

may be rewritten as



ON A QUARTIC DIOPHANTINE EQUATION 105

J.-.

which is of the form (11) for i = 3, where (X/j3,Y/^/3,a + \,b-\) replaces (X, Y,a,b).
Note that relation (13) is invariant under the non-trivial (K-automorphism of IK(,/3)
which sends yfl to — yfi and s1'2 to — e1/2. It will become transparent soon that
adjusting the domains for X, Y and a in this way is justified.

Recall that equation (11) has two real conjugates:

Because of symmetry—il/2=— ^ I and the pairs (X, Y), (X, — Y) are at the same time
solutions or non-solutions—we may assume without loss of generality that

Following [6, Sections II. 1 and II.2], we put

/?: = * - Y f (14)

Then l/^l^l/^l and hence the i0 of [6, Lemma 1.1] has the value 1. Elimination of X
and Y from the first, third and fourth conjugate equations of (14)—with the appropriate
adjustment in case i = 4—yields

By (11) this leads to

„ „ (15)

As it happens, e is real so that £4 = e3 = e3. Hence the variable a disappears from the
left-hand-side of equation (15). Also X and Y are absent. As all information we need to
make our argument work is implicitly given by equation (15), taking X, Ye(l/y/3)Z and
ae\Z is justified.

Put

Since a4 = a3 for all aelK, it follows that <5 and r\^lr\^ are on the unit circle. Now put
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8 = :eu-, r^ = :eiy, for C,ye(-w,w].
I

Then (15) implies that \e
iic+by) —1| is small for large b, so that a rational integer k exists

such that

(16)

is close to 0. In fact, with /4=max(|a|,\b\), we have by [6, Lemma 2.2]: if |Y|^6 then

(17)

Omitting the details, we merely provide the final constants that may be used in each of
our four cases:

C5S1-0323,
C6^1.1533xl06. l '

Note that all solutions (X, Y) with |Y|^5 can be found by direct search.
Next we apply the theory of linear forms in logarithms. The sharp bound of [1] yields

in all cases—again we omit the details:

|A| >exp(-4.7057 x 1016 logmax(|fe|, \k\)).

Observe that by (16), provided A^4,

\k\<-j— 1.1533 xl06exp ™" l )+i+i\b\<A. (19)

Hence we obtain

|A| >(exp -4.7057 x 1016 log A). (20)

Combining (17) with (18) and (20) yields

,4^4.9480 xlO17.

The next step is to reduce this huge bound on A by computational diophantine
approximation techniques.

Consider the lattice T c Z 2 generated by the column vectors of the matrix

1 0 \
[104Oy] [104O-27r]/
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where [•] means rounding towards 0. Further consider the vector y e Z 2 given by

' V-DO'W

In fact we have a different pair (F, y) for each of the four cases corresponding to
i= 1,2,3(4), 5.

Using an adaptation of the Euclidean Algorithm we computed a reduced basis for F.
From that reduced basis it is easy to calculate

,y): = m i n | x - y | .

See [7, Chapter 3] for details. We found that

in all five cases. Now put

Then clearly k e Z. We have

(3.6795:

and hence

1 7 ) 21017)

\X\ ^ 3.6460 xlO1 8.

Further, A = [104OC] + i>[104Oy] + fc[104O-27i], which implies—see (16) and (19)—that

| A - 1 0 4 0 A | ^ l + |fc| + |/c|g l + 2Ag,9.8961 x 1017,

provided that A ^ 4. It follows that

|A|^10-*°(|A|-9.8961 x 1017)^2.6563 x 10"2 2.

Combining this and (17) with (18) yields a reduced upper bound for A,

For all beZ with \b\^ 16, we computed a from
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IA. ^ 3 —"Al 4

(cf. (15)), and checked for ae%Z. The solutions we found can be read off from the
following diagram; X and Y were computed from (11).

1

1
1
2
3
3
5
5

a

-2
0
0

0
- 1

0

b

- 1
0
0

±1
0

- 1
0

X

13
1
2

1
- 3

3

y

7
1
1

±K/3
0
1
1

This completes the first proof of the Proposition. •
4. An algebraic proof

It could be argued that one of the drawbacks of the method presented in the previous
section lies in the fact that only limited use is made of the specific structure of the
associated number fields. In this section we don't use estimation techniques but instead
we try to express the solutions of (11) in terms of characteristic elements of the quartic
number fields involved. Like before, we have to consider five separate cases. As the
process is very similar in each case, we shall sometimes omit the details so as not to try
the reader's patience too much. A description of this algebraic approach may also be
found in [3].

Second proof of the Proposition. We proceed by considering (11) once more. Or
rather, we exchange r\ for £ as the second fundamental unit—it is clear from Table 1
that this is permitted—so that (11) becomes

X-Yip
, withcr= (21)

where (i is given by (12) for i= 1,2,3,4,5.
We know that 1̂ 2=— 4>i> £2 = ei a nd ^2==<Ji"1- F° r convenience we shall drop the

index 1 and write i// instead of t/̂  etc.
Define the sequences (sn)neZ and (tn)neZ as follows:

s-r1 and tn: = £," + £,'", forneZ.
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It is easily verified that sn and tn are algebraic integers of Q_ for all n. Indeed, on putting
p: = ^ + <^~16Z[N/6], this follows immediately from the binary recurrences

sn + i = ps n -s n _! , tn+i=pfn —tn-i, (22)

with initial values so = 0, s ^ l and tQ = 2, t1 = p. Moreover,

tn = sn+i-sn-l for all n. (23)

Immediate consequences of the definitions are the doubling formulas

s2n = sntn, t2n = t2
n-2 for all n. (24)

We return to (21). Adding this equation to its (real) conjugate on the one hand, and
subtracting (21) from its conjugate on the other hand, we arrive at the two expressions:

=

(25)

The left-hand-side of each of these equations is an integer of L Because of (23),
equations (25) give rise to explicit expressions of the form A(X, Y) + B(X, Y)y/6 for
every element of the sequence (sn) once ie{l,2,3,4,5} is specified. Here A and B are
linear forms with coefficients in Q. Of expressions like (25) we calculate the values by
the additive valuation functions of the prime above 2. As 2 ramifies in L, a rational
integer must be exactly divisible by an even number of the prime above 2, unless it
vanishes. We shall use this fact repeatedly.

We'll be more specific now and deal with each one of the cases corresponding to
16 {1,2,3,4,5} separately. Writing equations (25) in the form



110 R. J. STROEKER AND B. M. M. DE WEGER

i r, T2

1 27 U-X + Y)
2 2(X-Y) i(X-2Y)
3 2X 0
4 2(5^-147) 4(AT-37)
5 2(-X + 4Y) -AT + 37

S, S2

U-X+Y) UX-Y)
M-X + 2Y) UX-2Y)
-37 7
X-3Y %{X-3Y)
£( -X + 37) 0

TABLE 3. L-expressions for sb and tb

we obtain the following explicit expressions, gathered in Table 3.
For i = l, applying (22) and (23), we deduce from the relevant entries of Table 3 the

relations

137
= ae"sb+l,

(26)

This shows that

e"sb+leZ and

Indeed, for each of the equations (26), the left-hand-side is a rational number and the
right-hand-side is an algebraic integer of fl-

it is not difficult to see that for odd integers n, we have

and hence

sn=l (mod 2) and ^ = 2(1 + ^/6) (mod 4),

s2n = 2(1+^6) (mod 4).

By repeated index doubling with (24)—see also [3, Lemma 1]—and mathematical
induction, it follows from

em=l (mod 2)

and the observations above that for any m,neZ with n#0, an integer e_ l exists such
that

(mod2e+1).
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This implies that £ms2n£Z, unless n = 0. Consequently, from (26) we deduce that ft=0 or
b= — \, whence the only solutions in this case are {X, Y) = (a, a), (13a, la).

In the next case i = 2 we deduce from Table 3 that

X-2Y r-
30 ( - 7 + 3N/6) = CT£fls(»

(27)
\9X-2Y ,. . . .

- = <Tea(sd+1-llsJ,_,).

The first equation of (27) implies that b is even. Indeed, in L the prime 1 + y/6 divides
sb only for even b, as can be seen from (22) and the fact that p is divisible by 1 + v /o
too.

We intend to prove that fc = 0 by showing inductively that b is divisible by all positive
powers of 2. To this end we set

un: = sn+l — l lSn-j , n e Z

and we use the following congruence relations

(mod2i+2), i = l,2,... (28)

(mod2i+3), i = l,2,... (29)

These relations may be obtained from (22), (24) and the following facts

for all n e Z, (30)

which may be verified without great difficulty.
We proceed by assuming that b = 2' (mod2i+1) for some i_ l . Using (28) and the first

equation of (27), and dividing through by 2' results in

e"-l=ji (mod 4)

for some rational integer j v . Clearly, this is only possible for odd a.
Next, by (29) and the second equation of (27), we have

s ; 2 (mod2i+3)

for a rational integer j2- However, this gives an impossible congruence modulo 16 as a
is odd. Consequently, b must be divisible by all positive powers of 2, and hence b=0.
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Then (27) implies that X-2Y=0 and 19X-2Y=36o£a, from which we deduce that
a = 0and(X, Y) = (2o,o).

For i = 3 we obtain from Table 3 the following relations:

-3Y = ae"sb+l, (31)

Again, the first equation of (31) is only possible for even b, as the prime above 3 in L
divides sn only for even n. Also, for odd n, the following characterizations may be
obtained:

, with c,d odd and c + d=0(mod4), . _ . , , „ .
, with c',d' odd, ' - > > • • • .

which may be checked by using (24).
As before, let b = 2' (mod2' + 1) for some i^ 1. We'll show again that this is impossible.

We use the fact that the second and third equation of (31) imply that

sb+1sb-l=9Y2-X2eZ, (33)

where the bar denotes conjugation in L
Now, substitution of the expressions (32)—see also (22)—into the relations

and adding and subtracting the results, yields expressions for sb+i and s6_j which may
be used to show that

(mod2'+4),

as c + 3d = 2 (mod4). This clearly implies that sb+lsb-l$I.. Hence b=O, and from (31)
we deduce that (X, Y) = (a, 0).

For i = 4 we have the same sequences (sn) and (tn) as in case i = 3. From Table 3 we
get

X-3
3

— X — 7>Y
(34)



ON A QUARTIC DIOPHANTINE EQUATION 113

As in the previous case, it follows from the first equation of (34) that b is even. The
third equation of (34) now implies that a = 0 (mod 4), as

s2n+1 = ± l , ± 3 (mod 8).

The first relation of (32) can be extended inasmuch as c and d can be shown to satisfy

= 0 (mod8), provided i'^2.

Now either b or b — 2 is divisible by 4. Suppose b' = b or b — 2 and b' = 2' (mod2I + 1) for
some i^2. Then

y (35)

according to the first or the second equation of (34). Further, by the first relation
of (32),

/ / (mod21 + 3)

with c,d odd and c + d = 0 (mod 8). But c - 3 d # 0 (mod 8) and this contradicts (35).
Consequently, b' = 0 so that b = 0 or b = 2, and this gives (X, Y) = (3a,a),(-3a, -a)
by (34).

The final case i = 5 can be treated exactly like the first one. From Table 3 we read

-X + 3Y
— —

(36)
-X-3Y

This implies that

e"sbeZ and e ^ ^ e Z ,

and we proceed like we did in case i= l . We conclude that b = 0 or b = \, which gives
the solutions (X, Y) = {3a, a), ( - 3a, a).

It is easy to check that the solutions found correspond to those given in the statement
of the Proposition. The correspondences between (X, Y) and (M, V) of the Proposition are
given by (10) and (11).

This completes the second proof. •
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